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NANOINDENTATION OF LATERED MATERIALS WITH A 
NONHOMOGENEOUS INTERFACE 

 
Praveen K. Chalasani 

 
ABSTRACT 

 
 
 
               Indentation is used as a technique for mechanical characterization of materials for 

a long time. In the last few decades, new techniques of mechanical characterization at 

micro and nano level using indentation have been developed. Mechanical character-ization 

of thin films has become an important area of research because of their crucial role in 

modern technological applications. 

                Theoretical and computational models of indentation are less time consuming,  

cost effective, and flexible. Many researchers have investigated mechanical properties of 

thin films using theoretical and computational models.  

                In this study,  an indentation model for a thin layer-substrate geometry with the 

possibility of nonhomogeneous or homogeneous interface of finite thickness between layer 

and substrate has been developed. The layer and substrate can be nonhomogeneous or 

homogeneous. Three types of indenters are modeled: 1) Uniform pressure indenter        

2) Flat indenter 3) Smooth indenter. Contact depth, maximum interfacial normal stress and 

maximum interfacial shear stress play an important role in design and mechanical 

characterization of thin films using indentation and the effect of modeling the interface as 

homogeneous and nonhomogeneous on these parameters is studied. 

                  A sensitivity analysis is also conducted to find the effect of indentation area, 

substrate to layer Young’s modulus ratio, layer to interface thickness ratio on contact depth 

and critical interfacial stresses. 
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CHAPTER 1 

INTRODUCTION 

                               

                    Thin film coatings play an important role in modern technological 

applications. Thin films of micro and nano thickness are not uncommon in modern 

technological applications. So, mechanical characterization of thin films has become an 

important area of research. During early 1980s, it was found that load sensing indentation 

can be used to obtain mechanical properties of thin films and surfaces. Instruments that 

can produce sub-micron level indentations were developed. Since then extensive research 

has been done on depth sensing indentation and analysis of experimental data to obtain 

mechanical properties of materials. 

                                       

1.1 Literature survey 

            The procedure for depth sensing indentation is as follows. Load that varies 

linearly or in steps is applied to material while continuously measuring the indentation 

depth. Loading is followed by unloading and the data obtained is plotted to get load-

displacement curve.  Since it is time consuming and difficult to measure contact area of 

indentor by direct observation of hardness impressions, a simple and indirect method was 

developed by Oliver, Hutchings and Pethica (1986). Their method is based on load-

displacement data and indenter area function (cross-sectional area of indenter as a 

1 
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function of distance from its tip). The idea behind the method is that at peak load, the 

material conforms to the shape of indenter to some depth. If this depth can be known 

from load displacement data, then the projected area can be estimated from indenter 

shape function. 

             So, the estimation of contact depth of indenter in material at peak load became 

prime focus of early depth sensing indentation research. Oliver et al (1986) found that 

final depth is a better estimate for contact depth than the depth at maximum load. 

              Doerner and Nix (1986) observed that unloading curve is linear at peak load. 

They proposed a method of extrapolating the linear portion of unloading curve to zero 

load and using the extrapolated depth as contact depth. Experiments confirmed that 

extrapolated depth gives better estimation of contact depth when compared to either 

depth at peak load, hmax or final depth, hf. 

              Oliver and Pharr (1992) showed that unloading curve is not linear for all 

materials even at initial stages and developed an analysis technique that accounts for the 

curvature in unloading data to estimate contact depth that accounts for the curvature of 

unloading curve. The analysis is based on analytical solutions to different indentor 

geometries. The technique provides a physically justifiable procedure for determining 

contact depth. 

            The above mentioned methods are being used by researchers to obtain mechanical 

properties from load-displacement data. 

   

2 
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               Many researchers have investigated the mechanical properties of nano range 

thin films using nanoindentation. Some developed theoretical and computational 

indentation models. 

                 Chen, Lei Liu, and Wang (2004) investigated the effects of thickness and 

different film-substrate combinations. They used aluminum and tungsten films on glass 

and silicon substrates so that they can have a combination of soft films on hard substrates 

and hard films on soft substrates. They reported the effect of substrate on measured film 

properties. They found that for a soft film on a hard substrate hardness decreases at small 

indentation depth, then remains constant, and increases with increasing indentation depth. 

For a hard film on a soft substrate, hardness increases at small indentation depth, then 

remains constant, and decreases with increasing indentation depth. 

                   Chudoba, Schwarzer and Ritcher (2000) studied elastic properties of thin 

films by indentation measurements with a spherical indenter. They used an analytical 

solution for the elastic deformation of substrate to simulate load-displacement data. From 

this solution they could determine Young’s modulus of thin films independent of 

substrate effects.  Linss, Schwarzer, et al (2004) investigated the mechanical properties of 

graded thin films with varying Young’s modulus using theoretical modeling and 

nanoindentation. They showed that a graded coating can be distinguished from a 

homogeneous layer by elastic indentation using a variety of different spherical indentors.  

Chudoba et al (2004) derived the correct moduli at the lower and top most part of the 

graded coating using a mathematical model. Their theoretical values are in agreement 

with values obtained from experiments. 

 

3 
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1.2 Our study 

         In this study we investigated the effect of nonhomogeneous interface between film 

and substrate and quantified the effect of various parameters like film thickness, type of 

indentor, elastic modulus ratio, and contact depth of indentor. For this purpose we have 

modeled a homogeneous or nonhomogeneous thin layer on a homogeneous half-plane 

(substrate) separated by a nonhomogeneous or homogeneous interface. We used three 

different type of indenter loads  

           The advantage with the above model is mathematical formulation required is  

simple and readily available. Models for stress and displacement fields for a  

nonhomogeneous finite strip with exponential variation in Young’s modulus and  

Poisson’s ratio is available in literature (Delale and Erdogan, 1988; Kaw et al., 1992). 

Models for stress and displacement fields for a homogeneous half-plane are also present 

in literature (Delale and Erdogan, 1988; Kaw et al., 1992). Using the above 

mentioned mathematical models, the film-substrate model can be solved numerically 

with a high degree of accuracy. 
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CHAPTER 2 

FORMULATION 

 

2.1 Geometry 

              The geometry of the problem is shown in Fig 1. The model consists of two 

nonhomogeneous layers of infinite length and finite width and , respectively 

deposited on a homogeneous half-plane. Loads of different distributions are applied 

symmetrically about -axis over a length of on the top layer. Young’s modulus and 

Poisson’s ratio vary exponentially along the width of nonhomogeneous layers where as, 

they are constant in the homogeneous half-plane. This model can be solved 

mathematically for displacements and stresses. 

1h 2h

x a2

  

y
1x

2x

3x

a2

)( 11 xE
)( 11 xν

)( 22 xE
)( 22 xν2h

3E 3ν

ondistributiloaduniform

1h Layer 1 

Layer 2 

Half-plane 

Figure 1: Schematic diagram of the layer-substrate model 
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2.2 Stress and displacement field equations 

               For ith nonhomogeneous layer, Young’s modulus,  and Poisson’s 

ratio,  vary exponentially through the width as 

)( ii xE

)( ii xν

                               ,                                                                                  (1)            ii xi
ii eExE β= 0)(

                                ,                                                                   (2) ii x
i

ii
ii exbax β+=ν )()( 00

Where , , and  are found using the Young’s modulus and Poisson’s ratios at the 

edges of the i

ia0
ib0 iβ

iE0

th strip ( )iii hxx == ,0 . 

                      The equations for stresses and displacement fields for ith layer are given as 

(Delale and Erdogan, 1988; Kaw et al., 1992) 

The displacement along the x-direction is given by
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   The displacement along  y-direction is given by 
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The stress field is given by 
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2
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2
2

1 42 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
+η−

β
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The constants , and  in equations(1-9) are obtained from the Young’s modulus 

and Poisson’s ratio at the two edges 

iβ
ia0

ib0

( )iii hxx == ,0  of the ith strip. The mathematical 
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equations for the constants when Young’s modulus and Poisson’s ratio are varying 

exponentially across the width are then given by 

          
i

i

i

i h
E
E
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 where 

       = Width of iih th layer 

       = Young’s modulus of the iiE0
th layer at 0=ix  

       = Young’s modulus of the iiE0
th layer at ii hx =  

       = Poisson’s ratio of the ii
0ν

th layer at 0=ix , 

        = Poisson’s ratio of the ii
1ν

th layer at ii hx = . 

The equations for stress and displacement fields for the homogeneous half plane are 

given by (Gupta, 1973) 
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The displacement in y-direction is given by 
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The stress field is given by 
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where  and shear modulus 3κ 3µ  are given by 

                 , 33 43 ν−=κ

                 ( )[ ]3

3
3 12 ν+
=µ

E
, 

                 = Poisson’s ratio of half-plane, 3ν

                  = Young’s modulus of half-plane. 3E

               

2.3 Continuity conditions 

                  When we use equations (3)-(8) to layer 1 and layer 2 ,we have eight unknown 

functions , , , , )(1
1 ηc )(1

2 ηc )(1
3 ηc )(1

4 ηc ( )η2
1c , ( )η2

2c , ( )η2
3c ,and  . From Equations 

(13)-(17) for half-plane we have two more unknown functions and .  To find 

stresses and displacements we need to solve for ten unknown functions present in the 

equations  (3-8) and (13-17) ,using continuity and boundary conditions. 

( )η2
4c

)(3
1 ηc )(3

2 ηc
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                   Continuity conditions are applied to  stress and displacement equations (1-10) 

to get relationships between ten unknown functions , , , , )(1
1 ηc )(1

2 ηc )(1
3 ηc )(1

4 ηc ( )η2
1c , 

, , , ) and . ( )η2
2c ( )η2

3c ( )η2
4c (3

1 ηc )(3
2 ηc

           The continuity conditions at the interface ( 11 hx = or )02 =x  of layer 1 and layer 2 

are given by 

     

                 ,                                                                                    (18) ),0(),( 2
1

1 yyh xxxx σ=σ

                 ,                                                                                    (19) ),0(),( 2
1

1 yyh xyxy σ=σ

                 ,                                                                                        (20)  ),0(),( 211 yuyhu =

                 .                                                                                      (21) ),0(),( 211 yyh υ=υ

 

The above continuity conditions provide four equations relating the variables. We get 

another four equations by applying continuity conditions at the interface between layer 2 

and homogeneous half-plane, and are given by 

 

                ,                                                                                      (22) ),0(),( 3
2

2 yyh xxxx σ=σ

                ,                                                                                     (23)  ),0(),( 3
2

2 yyh xyxy σ=σ

                ,                                                                                         (24)  ),0(),( 322 yuyhu =

                .                                                                                       (25) ),0(),( 322 yyh υ=υ

 

Finally, we get two more equations relating unknown functions by applying boundary 

conditions to the stress and displacement field equations. 
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2.4 Boundary conditions 

           The boundary conditions on the top surface of the model are given by 

                                 

                                                                                                                    (26) 0),0(1 =σ yxy

                                                                  

                 ,  )(),0(1 ypyxx −=σ aya ≤≤−                                              

                                                                                                                                         (27) 

                , . 0),0(1 =σ yxx ay >

 

where,  

                    is the applied pressure distribution, )(yp

                    is the length over which the load is applied. a2

The  two boundary conditions (26-27) along with eight continuity conditions (18-25)  can 

be used to solve for ten unknown functions , , , , , )(1
1 ηc )(1

2 ηc )(1
3 ηc )(1

4 ηc ( )η2
1c ( )η2

2c , 

, , ) and . ( )η2
3c ( )η2

4c (3
1 ηc )(3

2 ηc

 

2.5 Types of loads 

             In this analysis we have used three different types of load distributions 

representing different types of indentors. 

Flat Indentor: 

         The pressure distribution  for a flat indentor is given by )(yp

11 
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                                       aya
ya

Lyp ≤≤−
−π

= ,)(
22

                                                (28) 

           where, 

 

                                   = the applied load, L

                                  = the loading length. a2

Smooth Indentor: 

          The pressure distribution  for a smooth indentor is given by    )(yp

                                    ayaya
a
Lyp ≤≤−−

π
= ,2)( 22

2                                                (29) 

               where, 

                                   is the applied load, L

                                   is the loading length. a2

Uniform pressure: 

              The uniform pressure distribution is given by 

                                   aya
a

Lyp ≤≤−= ,
2

)(                                                                  (30) 

                where, 

                                   = the applied load, L

                                   = the loading length. a2

 

2.6 Derivation of solution 

                        The ten equations (18-27) resulting from continuity and boundary 

conditions can be arranged in the matrix form as 

12 
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                                 [ ][ ] [ ]CBA =

           where, 

                        is the coefficient matrix, [ ]A

                         is the matrix of unknown functions, [ ]B

                        is the right hand side array. [ ]C

 

             The above matrix form can be solved numerically for unknown functions. These 

functions are substituted in the stress and displacement field equations (3-8) and (13-17), 

and these equations are solved numerically to get stresses and displacements at any given 

point in the model. 
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CHAPTER 3 

DESIGN OF EXPERIMENTS 

 

3.1 Introduction 

             Design of experiments is a scientific way of planning the experiments involving 

more than one factor so that appropriate data that can be analyzed using statistical 

techniques is collected.  Statistical analysis of collected data is important to reach valid 

conclusions. Since any valid scientific research involves experiments and statistical 

analysis of data collected from experiments, design of experiments involving multiple 

factors is an integral part of scientific study. In this chapter we discuss 2k factorial design 

(Montgomery, 2001) which we used in our study. 

 

3.2 Factorial designs 

               Factorial designs are used to study the combined effects of several factors on a 

response. Most experiments have two or more factors involved. Factorial designs are 

more useful for experiments involving more than two factors. There are several special 

cases of general factorial design that are used in research work because they form the 

basis for other designs of considerable practical importance. The most important special 

case of general factorial design is that of k factors, each at two different levels. This 

special case requires  observations and is called factorial design. k22......222 =×××× k2

14 
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3.3  Factorial design k2

               Factorial design is a design with k factors each at two different levels. The 

model includes k main effects,    two-factor interactions,  three factor 

interactions, and one -factor interaction. There are 

k2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
k

k 12 −k  total number of effects in a 

factorial design. For example, a factorial design has k2 32 123 −  total number of effects. 

In our study we have four important factors, so  factorial design is appropriate for our 

case. The following section discusses  factorial design in detail. 

42

42

 

3.4  Factorial design 42

                 Let A, B, C, D are four main factors involved in the experiment. The total 

number of observations or runs required is given by . Each factor has two 

different levels indicated by - and

1624 =

+ . One level is indicated by - where as +  represents 

other level. There are   total number of effects in factorial design, they are 124 −

 

                 Main effects: A, B, C, D 

                 Two factor interactions: AB, AC, AD, BC, BD, and CD 

                 Three factor interactions: ABC, ABD, ACD, and BCD 

                 Four factor interaction: ABCD. 

Table 1 shows the 16 runs or observations required for  design. 42
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Table 1: Notations for experimental combinations 

Run No       A      B        C      D Run label Response 

       1       -      -         -     -      (1)  Data1 

       2       +      -         -     -       a  Data2 

       3       -       +         -     -       b  Data3 

       4       +      +         -     -       ab  Data4 

       5       -      -         +     -       c  Data5 

       6       +      -         +     -       ac  Data6 

       7       -      +         +     -        bc  Data7 

       8       +      +         +     -       abc  Data8 

       9       -      -         -     +       d  Data9 

      10       +      -         -     +       ad  Data10 

      11       -      +         -     +       bd  Data11 

      12       +      +         -     +       abd  Data12 

      13       -      -          +     +       cd  Data13 

      14       +      -         +     +       acd  Data14 

      15       -      +         +     +       bcd  Data15 

      16       +      +         +     +       abcd  Data16 

 

Table 2 below shows the contrast constants for the  design. 42

Table 2: Contrast constants for  design 42

Run 

label 

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) - - + - + +   - - + + - + - - + 

a  + - - - - +  + - - + + + + - - 

b - + - - + -  + - + - + + - + - 

ab  + + + - - -  - - - - - + + + + 

c - - + + - - + - + + - - + + - 

ac + - - + + - - - - + + - - + + 

16 
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Table 2: Continued 

bc - + - + - + - - + - + - + - + 

abc + + + + + + + - - - - - - - - 

d - - + - + + - + - - + - + + - 

ad + - - - - + + + + - - - - + + 

bd - + - - + - + + - + - - + - + 

abd + + + - - - - + + + + - - - - 

cd - - + + - - + + - - + + - - + 

acd + - - + + - - + + - - + + - - 

bcd - + - + - + - + - + - + - + - 

abcd + + + + + + + + + + + + + + + 

 

                      The contrast constants for interaction effects shown are obtained by 

multiplying the contrast constants of individual effects. For example, the contrast 

constant for interaction effect BC for run (1) is + because both B and C has - contrast 

constant for run (1). 

 

Contrast: 

          The next step is to find contrasts from contrast constants. Contrast for each effect is 

obtained by multiplying the contrast column of each effect with the response column in 

Table 1 and then taking the sum of the elements of the resulting column. For example, for 

factor A contrast is obtained by multiplying column A in Table 2 with response column 

in Table 2 and adding all the elements of resulting column. So contrast for A is given by 

 

          Contrast A = (-Data1+Data2-Data3+Data4-Data5+Data6-Data7+Data8-  

                                 Data9+Data10-Data11+Data12-Data13+Data14-Data15+Data16) 

17 
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Similarly we can find Contrasts for all the 124 − effects. 

 

Sum of squares: The sum of squares for the effects are calculated using the following  

formulae. 

                   ( )
n

ContrastSS 4

2

2
=  

 

 where, 

                    n = number of runs. 

 

Total sum of squares: The total sum of squares is obtained by adding the individual sum 

of squares of effects. 

 

                ABCDCBAT SSSSSSSSSS ++++= ..........  

 

            The percentage contribution of each of the effects is obtained by taking the ratio 

of sum of squares of effect to total sum of squares and then multiplying the result with 

100. For example, the percentage contribution of effect A is given by 

 

                        Percentage contribution of A 100×=
T

A

SS
SS . 

           The factor having the highest percentage contribution is said to have the most 

effect on the experiment. 
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CHAPTER 4 

RESULTS 

 

4.1 Introduction 

                 In this chapter we present the results obtained from FORTRAN program and 

statistical analysis. The layer-substrate indentation model discussed in chapter 2 can be 

solved mathematically for stresses and displacements using the formulation described in 

chapter 2.  Our objective is to study the effect of nonhomogeneous interface between 

homogeneous layer and homogeneous substrate on contact depth at the surface, 

maximum normal stress and maximum shear stress at the interface and to quantify the 

effect of various parameters on the results using statistical analysis.  

        To achieve the above purpose we have used the formulation presented in chapter 2. 

Layer 1 in the model described in chapter 2 is our homogeneous layer and Layer 2 can be 

used as either nonhomogeneous or homogeneous interface between homogeneous layer 

and homogeneous substrate represented by homogeneous half-plane.  

 

4.2 Contact depth 

                Contact depth,  is the depth through which the indentor is in contact with the 

material. It is obtained from the model by taking the difference of displacements at 

at  and . 

d

0=x 0=y ay =

19 
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                                       )0,0(),0( uaud −=  

               We have obtained results for contact depth  for both homogeneous and  d

nonhomogenous interface for all the three types of indentors, for different Young’s 

modulus ratio and for different indentor width-layer thickness ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1h
a  ratio. Below are the 

values we have chosen for each parameter. 

 

 Young’s modulus ratio,    
200
15:

3

1

E
E ,

120
15 , 

60
15 , 1, 

15
60 , 

15
120 , 

15
200  

 

   Indentor width-layer thickness ratio   ,
6
1:

1h
a  ,

3
1  

2
1  

            We had to choose Young’s modulus ratio between 
200
15 and  

15
200   to keep the 

exponentially varying Poisson’s ratio below 0.5.  

                Fig 2, Fig 4, and Fig 6 show how normalized vertical displacement difference 

( )
( )Lh

Eauyu

1

1
2)0()( π− , varies with distance from indentor axis along surface for uniform 

indentor, flat indentor and spherical indentor, respectively. The figures contain plots for 

both nonhomogeneous and homogeneous interface.   

           Fig 3, Fig 5, and Fig 7 below are contact depth ratio 
h

nh

d
d

 as a function of  

Young’s modulus ratio plots for uniform indentor, flat indentor, and spherical indentor, 

respectively.   

20 



www.manaraa.com

-0.08

-0.06

-0.04

-0.02

0
0 0.04 0.08 0.12

distance from indentor axis, y

(u
(y

)-u
(0

))(
π

a2 E 1
)/(

h 1
L)

h

nh

 

Figure 2: Normalized vertical displacement difference (u(y)-u(0))(πa2E1)/(h1L) as a 

function of distance along top surface from indentor axis for uniform pressure 
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Figure 3: Contact depth ratio as a function of Young’s modulus ratio between layer and 

substrate for uniform pressure 
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Figure 4: Normalized vertical displacement difference, (u(y)-u(0))(πa2E1)/(h1L) as a 

function of distance along top surface from indentor axis for flat indentor 
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Figure 5: Contact depth ratio as a function of Young’s modulus ratio between layer and 

substrate for flat indentor 
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Figure 6: Normalized vertical displacement difference (u(y)-u(0))(πa2E1)/(h1L),  as a 

function of distance along top surface from indentor axis for spherical indentor 
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Figure 7: Contact depth ratio as a function of Young’s modulus ratio between layer and 

substrate for spherical indentor 
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          We can see from Fig 3, Fig 5, and Fig 7 the contact depth ratio 
homd

dnon  is close to1.0 

except for flat indentor where the ratio is close to 2.0 for values of 
3

1

E
E  close to zero and 

the ratio increases with increase in 
1h

a  ratio. So there is no significant difference between 

contact depth values for homogeneous and nonhomogeneous interface either for soft 

layer on hard substrate, 0.1
3

1 <
E
E  or for hard layer on soft substrate, 0.1

3

1 >
E
E . 

             Also, from Fig 2, Fig 4 and Fig 6 one can notice that contact depth curves for 

homogeneous and nonhomogeneous interface are overlapping each other. So, we can 

conclude that for 33.130
3

1 <<
E
E ,  contact depth results are not effected by 

nonhomogeneous nature of interface. 

 

4.3 Normal stress 

         The maximum normal stress maxxxσ  at the interface should be maintained below a 

critical value to avoid debonding between layer and substrate.  We have obtained results 

for maximum normal stress at the layer-substrate interface maxxxσ  for both 

homogeneous and nonhomogenous interface for all the three types of indentors, for 

different Young’s modulus ratio and for different 
1h

a  ratio. Below are the values we have 

chosen for each parameter. 
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  Young’s modulus ratio,   
200
15:

3

1

E
E , 

120
15 , 

60
15 , 1, 

15
60 , 

15
120 , 

15
200  

 

   Indentor width-layer thickness ratio,    ,
6
1:

1h
a  ,

3
1  

2
1  

  

                    Fig 8, Fig 10, and Fig 12 show how normalized interface normal stress , 

σxx(πa2)/L changes with distance from indentor axis along interface for uniform pressure, 

flat indentor, and spherical indentor, respectively. The curves represent normal stress as a 

function of distance for homogeneous and nonhomogeneous interface.  

                    Fig 9, Fig 11, and Fig 13 below are plots for maximum normal stress ratio as 

a function of Young’s modulus ratio for uniform indentor, flat indentor, and spherical 

indentor respectively. The three different curves represent three different ratios between 

indentor width and layer thickness. 
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Figure 8:  Normalized interface normal stress, σxx(πa2)/L at the layer-substrate interface 

as a function of distance along interface from indentor axis for uniform pressure  
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Figure 9: Maximum normal stress ratio along interface as a function of Young’s modulus 

between layer and substrate for uniform pressure 
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Figure 10:  Normalized interface peel stress, σxx(πa2)/L at the layer-substrate interface as 

a function of distance along interface from indentor axis for flat indentor 
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Figure 11: Maximum normal stress ratio along interface as a function of Young’s 

modulus between layer and substrate for flat indentor 
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Figure 12:  Normalized interface peel stress, σxx(πa2)/L at the layer-substrate interface as 

a function of distance along interface from indentor axis for spherical indentor 
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Figure 13: Maximum normal stress ratio along interface as a function of Young’s 

modulus between layer and substrate for spherical indentor 

                

     W e can see from the above plots the maximum normal stress ratio 
)(
)(

h
nh

xx

xx

σ
σ

 is close 

to 1.0 and the ratio increases with increase in 
1h

a  ratio. So there is no significant 

difference between maximum normal stress ratio values for both homogeneous and 

nonhomogeneous interface either for soft layer on hard substrate 0.1
1

3 >
E
E

 or for hard 

layer on soft substrate 0.1
1

3 <
E
E

. 

                   Again for normal stress as a function of distance curves for homogeneous and 

nonhomogeneous interface are overlapping each other as shown in Fig 8 , Fig 10, and  

Fig 12 So, we can conclude that for 33.130
3

1 <<
E
E  nonhomogeneous interface does not 

have significant effect on normal stress results. 
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4.4 Shear stress 

          Shear stress at the interface should be maintained below a critical value to prevent 

debonding between layer and substrate.  We have obtained results for maximum shear 

stress at the layer-substrate interface xyσ  for both homogeneous and non homogenous 

interface for all the three types of indentors, for different Young’s modulus ratio and for 

different 
1h

a  ratio. Below are the values we have chosen for each parameter. 

                
15
200,

15
120,

15
60,1,

60
15,

120
15,

200
15:

1

3

E
E

 

                 
2
1,

3
1,

6
1:

1h
a  

                 Fig 14, Fig 16, and Fig 18 are plots showing how normalized interface shear 

stress, σxy(πa2)/L changes with distance from indentor axis along interface. Fig 15, Fig 

17, and Fig 19 below are maximum shear stress ratio as a function of Young’s modulus 

ratio plots for uniform indentor, flat indentor, and spherical indentor, respectively. 
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Figure 14: Normalized interface shear stress, σxy(πa2)/L at the layer-substrate interface as 

a function of distance along interface from indentor axis for uniform pressure 
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Figure 15: Maximum shear stress ratio along interface as a function of Young’s modulus 

between layer and substrate for uniform pressure 
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Figure 16: Normalized interface shear stress, σxy(πa2)/L at the layer-substrate interface as 

a function of distance along interface from indentor axis for flat indentor 
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Figure 17: Maximum shear stress ratio along interface as a function of Young’s modulus 

between layer and substrate for flat indentor 
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Figure 18: Normalized interface shear stress, σxx(πa2)/L at the layer-substrate interface as 

a function of distance along interface from indentor axis for spherical indentor 
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Figure 19: Maximum shear stress ratio along interface as a function of Young’s modulus 

between layer and substrate for spherical indentor 

 

              We can see from the above plots the maximum shear stress ratio 
( )
( )h
nh

xy

xy

σ

σ
 is 

close to 1.0 and the ratio increases with increase in 
1h

a  ratio. So there is no significant 

difference between maximum shear stress values for homogeneous and nonhomogeneous 

interfaces either for soft layer on hard substrate 0.1
1

3 >
E
E

 or for hard layer on soft 

substrate 0.1
1

3 <
E
E

. 

        We can also see from Fig 14, Fig 16, and Fig 18 that there is no significant 

difference between homogeneous and nonhomogeneous interface curves. So, we can 

conclude for 33.130
3

1 <<
E
E  nonhomogeneous interface does not effect shear stress 

results at the interface significantly. 
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4.5 Sensitivity analysis 

                The second part of study deals with using statistical analysis to quantify the 

effect of various factors on contact depth ratio, maximum normal stress ratio, and 

maximum stress ratio. For this purpose we have designed experiments using  factorial 

design discussed in previous chapter. 

42

                       The four factors we have chosen for  factorial design in our study are  42

A) Type of indentor, 

B) 
1

2

h
h  ratio, 

C) 
1h

a , 

D) Young’s modulus ratio
3

1

E
E . 

               The above factors are chosen at two different levels. Table 3 shows the two 

levels chosen for each factor to execute  factorial design. 42

 

Table 3: Values of two different levels of the factors 

Factor Symbol Level 1 Level 2 

Type of indentor A Flat indentor Spherical indentor 

1

2

h
h  

B 05.0  15.0  

1h
a  

C 1667.0  5.0  

3

1

E
E  

D 
200
15  

15
200  
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4.6 Calculations 

                 Using the above levels for factors as input we have calculated using the 

method described in previous chapter the percentage contribution of each factor by itself 

and together with other factors to a response. 

           Table 4, Table 5, and Table 6 below present percentage contribution of factors A-

Type of indentor, B-ratio between interface width and layer width, C-ratio between 

indentor width and layer width, D-Young’s modulus ratio and their combinations to 

contact depth ratio, maximum normal stress ratio, and maximum shear stress ratio 

respectively. 

 

Table 4: Percentage contribution of factors to contact depth ratio 

Factor Effect Estimate Sum of Squares Percentage Contribution

A -0.014160791 0.01203168 16.66 

B  0.002276597 0.000310974   0.43 

C  0.014212838 0.012120286 16.78 

D -0.013699431 0.011260465 15.59 

AB -0.002096113 0.000263621   0.36 

AC -0.013957742 0.011689113 16.18 

AD  0.013795987 0.011419756 15.81 

BC -0.002096113 0.000263621   0.36 

BD -0.001850729 0.000205512   0.28 

CD -0.002096113 0.000263621   0.36 

ABC -0.001994151 0.000238598   0.33 

ABD  0.001901632 0.000216972   0.30 

ACD  0.01383597 0.011486044 15.90 

BCD -0.001890864 0.000214522   0.29 

ABCD  0.00192271 0.000221809   0.30 
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Table 5: Percentage contribution of factors to maximum normal stress ratio 

Factor Effect Estimate Sum of squares Percentage Contribution 

A -0.0000823695 0.0000004071 0.39 

B -0.0006275050 0.0000236258 22.71 

C  0.0002036027 0.0000024872 2.39 

D -0.0009689179 0.0000563281 54.15 

AB -0.0000458643 0.0000001262 0.12 

AC -0.0000606182 0.0000002205 0.21 

AD -0.0000648704 0.0000002525 0.24 

BC -0.0000458643 0.0000001262 0.12 

BD -0.0005713832 0.0000195887 18.83 

CD -0.0000458643 0.0000001262 0.12 

ABC -0.0000345889 0.0000000718 0.069 

ABD -0.0000341496 0.0000000700 0.067 

ACD -0.0000477291 0.0000001367 0.13 

BCD  0.0000830774 0.0000004141 0.39 

ABCD -0.0000260699 0.0000000408 0.039 

 

Table 6: Percentage contribution of factors to maximum shear stress ratio 

Factor Effect Estimate Sum of squares Percentage Contribution

A  0.00002778 0.0000000463 0.021 

B -0.0013148942 
 

0.0001037368 47.06 

C -0.0000566192 0.0000001923 0.087 

D  0.0010163401 0.0000619768 28.11 

AB  0.0000916392 0.0000005039 0.22 

AC  0.0000441751 0.0000001171 0.053 

AD -0.0000467626 0.0000001312 0.059 

BC  0.0000916392 0.0000005039 0.22 

BD  0.0008835317 0.0000468377 21.24 
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Table 6: Continued 
 
CD  0.0000916392 0.0000005039 0.22 

ABC  0.0000751591 0.0000003389 0.15 

ABD -0.0000674468 0.0000002729 0.12 

ACD -0.0000233928 0.0000000328 0.014 

BCD -0.0002831228 0.0000048095 2.18 

ABCD -0.0000827806 0.0000004112 0.18 

  
 

              From Table 5 we can see that the contribution of individual factors A (Type of 

load), C (Indentor width to layer width ratio,a/h1) and D (Young’s modulus ratio E3/E1) to 

contact depth ratio response is significant and almost equal (close to 15%) where as 

contribution from B ( Interface width to layer width ratio, h2/h1) is minimum(0.43%). So, 

we can conclude that contact depth ratio response equally depends on A (Type of 

indentor), C (Indentor width to layer width ratio, a/h1), D (Young’s modulus ratio, E3/E1) 

and the influence of B (Interface width to layer width ratio, h2/h1) on contact depth ratio 

is minimum. 

           From Table 6 we can see that maximum normal stress ratio response has largest 

contribution from D-54.15% (Young’s modulus ratio, E3/E1) followed by B-22.71% 

(Interface width to layer width ratio, h2/h1).The contributions of A (Type of load) and  

C (Indentor width to layer width ratio, a/h1) are 0.39% and 2.39%, respectively. So, we 

can conclude that D (Young’s modulus ratio, E3/E1) is the most significant factor and A 

(Type of load) is the least significant factor for maximum normal stress ratio.    

                      From Table 7 we can see that B (Interface width to layer width ratio, h2/h1) 

followed by D (Young’s modulus ratio, E3/E1) with contributions 47.06% and 28.11%, 
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respectively are significant factors for maximum shear stress response and contributions 

from A (Type of load) and C (Indentor width to layer width ratio, a/h1) are  0.027% and 

0.087%, respectively. So, we can conclude that B (Interface width to layer width ratio, 

h2/h1) is the most significant factor and A (Type of load) is the least significant factor for 

normal shear stress response. 
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CHAPTER 5 

CONCLUSIONS 

 

                    The objective of this study is to study the effect of various parameters 

involved in layer-substrate indentation experiments on final results. We have shown that 

either for soft layer on hard substrate or for hard layer on soft substrate the results for 

contact depth, maximum normal stress and maximum shear stress are almost  same  for 

homogeneous change of Young’s modulus at the interface and nonhomogeneous change  

of Young’s modulus at the interface. So, we cannot conclude whether the interface is 

homogeneous or nonhomogeneous using contact depth results from layer-substrate 

indentation experiments for Young’s modulus ratio less than 13.33 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
< 33.13

3

1

E
E .  

                           Also, using statistical analysis we have quantitatively found the effect of 

various factors on contact depth ratio, maximum normal stress ratio and maximum shear 

stress ratio. Young’s modulus ratio followed by ratio between  interface thickness and 

layer thickness have major impact on both maximum normal stress ratio and maximum 

normal stress ratio where as the impact of type of load and indentor width- layer 

thickness ratio is insignificant. Also, Young’s modulus ratio, indentor width-layer 

thickness ratio and type of load have equal and significant impact on contact depth ratio 

where as ratio between interface thickness and layer thickness has no significant  impact 

on contact depth ratio.  
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                Although, conclusions on the effect of nonhomogeneous interface are based on 

restricted choice of Young’s modulus ratio, our study is a good start in characterization of 

interface which is important in design and deposition of thin films on substrates. In the 

next part of our study we propose to overcome the limitations on Young’s modulus ratio 

by modeling the interface as multiple nonhomogeneous thin sub strips with Young’s 

modulus and Poisson’s ratio varying exponentially across each sub strip thickness. 

          Further, sensitivity analysis provides valuable information about the impact of 

various parameters on indentation results which can be used in design and mechanical 

characterization of layer-substrate combinations.                                       
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